This function generates all the permutations of selecting k items from n items. The results are in lexicographical order.

permutations(x = NULL, k = NULL, n = NULL, v = NULL, freq = NULL,
  replace = FALSE, layout = NULL, nitem = -1L, skip = NULL,
  index = NULL, nsample = NULL, drop = NULL)

Arguments

x

an integer or a vector, will be treated as n if integer; otherwise, will be treated as v. Should not be specified together with n and v.

k

an integer, the number of items drawn, defaults to n if freq is NULL else sum(freq)

n

an integer, the total number of items, its value may be implicitly deduced from length(v) or length(freq)

v

a vector to be drawn, defaults to 1:n.

freq

an integer vector of item repeat frequencies

replace

an logical to draw items with replacement

layout

if "row", "column" or "list" is specified, the returned value would be a "row-major" matrix, a "column-major" matrix or a list respectively

nitem

number of permutations required, usually used with skip

skip

the number of permutations skipped

index

a vector of indices of the desired permutations

nsample

sampling random permutations

drop

vectorize a matrix or unlist a list

See also

ipermutations for iterating permutations and npermutations to calculate number of permutations

Examples

permutations(3)
#> [,1] [,2] [,3] #> [1,] 1 2 3 #> [2,] 1 3 2 #> [3,] 2 1 3 #> [4,] 2 3 1 #> [5,] 3 1 2 #> [6,] 3 2 1
permutations(LETTERS[1:3])
#> [,1] [,2] [,3] #> [1,] "A" "B" "C" #> [2,] "A" "C" "B" #> [3,] "B" "A" "C" #> [4,] "B" "C" "A" #> [5,] "C" "A" "B" #> [6,] "C" "B" "A"
# choose 2 from 4 permutations(4, 2)
#> [,1] [,2] #> [1,] 1 2 #> [2,] 1 3 #> [3,] 1 4 #> [4,] 2 1 #> [5,] 2 3 #> [6,] 2 4 #> [7,] 3 1 #> [8,] 3 2 #> [9,] 3 4 #> [10,] 4 1 #> [11,] 4 2 #> [12,] 4 3
permutations(LETTERS[1:3], k = 2)
#> [,1] [,2] #> [1,] "A" "B" #> [2,] "A" "C" #> [3,] "B" "A" #> [4,] "B" "C" #> [5,] "C" "A" #> [6,] "C" "B"
# multiset with frequencies c(2, 3) permutations(k = 3, freq = c(2, 3))
#> [,1] [,2] [,3] #> [1,] 1 1 2 #> [2,] 1 2 1 #> [3,] 1 2 2 #> [4,] 2 1 1 #> [5,] 2 1 2 #> [6,] 2 2 1 #> [7,] 2 2 2
# with replacement permutations(4, 2, replace = TRUE)
#> [,1] [,2] #> [1,] 1 1 #> [2,] 1 2 #> [3,] 1 3 #> [4,] 1 4 #> [5,] 2 1 #> [6,] 2 2 #> [7,] 2 3 #> [8,] 2 4 #> [9,] 3 1 #> [10,] 3 2 #> [11,] 3 3 #> [12,] 3 4 #> [13,] 4 1 #> [14,] 4 2 #> [15,] 4 3 #> [16,] 4 4
# column major permutations(3, layout = "column")
#> [,1] [,2] [,3] [,4] [,5] [,6] #> [1,] 1 1 2 2 3 3 #> [2,] 2 3 1 3 1 2 #> [3,] 3 2 3 1 2 1
permutations(4, 2, layout = "column")
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] #> [1,] 1 1 1 2 2 2 3 3 3 4 4 4 #> [2,] 2 3 4 1 3 4 1 2 4 1 2 3
# list output permutations(3, layout = "list")
#> [[1]] #> [1] 1 2 3 #> #> [[2]] #> [1] 1 3 2 #> #> [[3]] #> [1] 2 1 3 #> #> [[4]] #> [1] 2 3 1 #> #> [[5]] #> [1] 3 1 2 #> #> [[6]] #> [1] 3 2 1 #>
permutations(4, 2, layout = "list")
#> [[1]] #> [1] 1 2 #> #> [[2]] #> [1] 1 3 #> #> [[3]] #> [1] 1 4 #> #> [[4]] #> [1] 2 1 #> #> [[5]] #> [1] 2 3 #> #> [[6]] #> [1] 2 4 #> #> [[7]] #> [1] 3 1 #> #> [[8]] #> [1] 3 2 #> #> [[9]] #> [1] 3 4 #> #> [[10]] #> [1] 4 1 #> #> [[11]] #> [1] 4 2 #> #> [[12]] #> [1] 4 3 #>
# specifc range of permutations permutations(4, 2, nitem = 2, skip = 3)
#> [,1] [,2] #> [1,] 2 1 #> [2,] 2 3
# specific permutations permutations(4, 2, index = c(3, 5))
#> [,1] [,2] #> [1,] 1 4 #> [2,] 2 3
# random permutations permutations(4, 2, nsample = 3)
#> [,1] [,2] #> [1,] 1 3 #> [2,] 1 2 #> [3,] 2 4
# zero sized permutations dim(permutations(0))
#> [1] 1 0
dim(permutations(5, 0))
#> [1] 1 0
dim(permutations(5, 6))
#> [1] 0 6
dim(permutations(0, 0))
#> [1] 1 0
dim(permutations(0, 1))
#> [1] 0 1